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Abstract: The goal of this contribution is presenting a Theorem which states the stability of a feedback 
controlled system with a Linear Generalized Model Predictive Control (LGMPC). Concerning the stability, a 
sufficient and constructive condition on the weight matrices of the cost function used in the optimization 
problem in LGMPC for one step prediction horizon is demonstrated. The condition consists of a lower bound 
for one of these matrices. The obtained condition is explained and discussed by means of some physical 
considerations. The second part of this contribution is devoted to the saturation case and proves a sufficient 
condition for obtaining stability and saturation avoidance. Two case studies are shown using computer 
simulations at the end of the paper. 
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1 Introduction 
Improvements of the tracking of a desired trajectory 
are very often achieved by means of a Model 
predictive control approach. The linear prediction 
algorithm is used for improvement of the tracking 
performances of an adaptive controller. Because of 
that, MPC is commonly used in drives control 
applications [1, 2]. Constraints and multi-variable 
industrial processes can be successfully managed by 
MPC, that is why this control approach has been 
applied in a wide range of automotive and process 
control communities [3]. In the meantime, the MPC 
applications are usually limited by slow dynamic 
systems because of the computation burden in 
solving optimization problems on-line [3]. Studying 
of application of MPC in mechatronic systems for 
servo design has attracted interest of a great number 
of researchers. The reason for that is development of 
a microprocessor technology. There are some 
advantageous examples in many mechatronic 
systems such as electrical motor control [4], tow 
stage actuation system control and machine tool 
chattering control [5]. There is also a fast 
development of different advanced techniques 
integrated within MPC for the performance 
improvement [6]. One of the most interesting 
problems in the contest of optimization consists of 
finding conditions on the stability.  In this 

contribution, lower bounds of matrix which 
characterizes the cost function are found to 
guarantee the stability of the optimal solution for 
one step prediction horizon. The condition is a 
constructive one and straightforward to be 
interpreted. This contribution is divided into the 
following parts. Section 2 proves a property of the 
LGMPC in case without and with saturation for one 
step prediction horizon. Section 3 is devoted to 
present two examples. Conclusions close the paper. 
 
2 A stability sufficient constructive 
condition in GMPC 
Theorem 1 Let us take the discrete SISO linear 
system into consideration: 
 
𝐳𝐳(k + 1) = 𝐀𝐀k𝐳𝐳(k) + 𝐁𝐁𝑘𝑘𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑘𝑘),          (1) 

y(k) = 𝐇𝐇k𝐳𝐳(k),                             (2) 
 

which is obtained by a discretization of linear 
continuous system a sampling time which equals 
𝑇𝑇𝑠𝑠 . 𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑘𝑘) represents the first element of the 
vector of the optimal solution as calculated in [7] for 
the following cost function: 
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𝐽𝐽 =  
1
2
��𝑦𝑦𝑑𝑑(𝑘𝑘 +  𝑗𝑗)– 𝑦𝑦� (𝑘𝑘 +  𝑗𝑗)�𝑇𝑇𝐐𝐐p�𝑦𝑦𝑑𝑑(𝑘𝑘 
𝑁𝑁

𝑗𝑗=1
+  𝑗𝑗)– 𝑦𝑦�(𝑘𝑘 +  𝑗𝑗)� 

+��𝛥𝛥𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑘𝑘 +  𝑗𝑗 −1)�
𝑇𝑇
𝑹𝑹𝑝𝑝𝛥𝛥𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐

𝑁𝑁

𝑗𝑗=1

(𝑘𝑘 +  𝑗𝑗

−1),                                                                          (3) 
 
 where   𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑘𝑘) = 𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑘𝑘)−𝑢𝑢𝑚𝑚𝑝𝑝𝑝𝑝 (𝑘𝑘 −
1),  𝑦𝑦𝑑𝑑(𝑘𝑘 + 𝑗𝑗), 𝑗𝑗 = 1,2, … ,𝑁𝑁 𝑖𝑖𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 output 
reference trajectory and N is the prediction 
horizon, and 𝐐𝐐p  and 𝐑𝐑pare non-negative definite 
matrices. Furthermore, the solution minimizing 
performance index (3) may be obtained by solving: 
 

∂J
∂Δ𝐔𝐔m p c

= 0.                                                           (4)                                                       

 
It is known for instance from [7] that the optimal 
solution is: 
𝛥𝛥𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑘𝑘) =(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝 + 𝐑𝐑𝑝𝑝)−1 
𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝 �𝐘𝐘ⅆ𝑝𝑝 (𝑘𝑘) −� �𝐆𝐆𝑝𝑝𝐳𝐳(𝑘𝑘)�,                                  (5) 

 
In which in case of one step prediction horizon 𝐅𝐅1𝑝𝑝  
= 𝐇𝐇𝑘𝑘𝐁𝐁𝑘𝑘  and 𝐆𝐆𝑝𝑝 = 𝐇𝐇𝑘𝑘𝐀𝐀𝑘𝑘  and where 
𝐘𝐘ⅆ𝑝𝑝 (𝑘𝑘)  is the desired output column vector. 
Matrices 𝐐𝐐𝑝𝑝  and 𝐑𝐑𝑝𝑝are diagonal and positive 
defined. Under the hypothesis that system (5) is 
asymptotically stable, i.e. (‖𝐀𝐀𝑘𝑘‖2 < 1), where  
 

‖𝐀𝐀𝑘𝑘‖2 =�𝑚𝑚𝑎𝑎𝑎𝑎λi(𝐀𝐀𝑘𝑘𝑇𝑇𝐀𝐀𝑘𝑘) for i=1,2,…, n ∈ N 

represents the root of the maximal eigenvalue of 
matrix 𝐀𝐀𝑘𝑘𝑇𝑇𝐀𝐀𝑘𝑘 , 𝑡𝑡ℎ𝑒𝑒𝑛𝑛 ∀ 𝐑𝐑𝑝𝑝  diagonal and positive 
defined matrix such that: 

‖𝐑𝐑𝑝𝑝‖2  >
‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2
1−‖𝐴𝐴𝑘𝑘‖2

                                          (6) 

and 

 ‖𝐀𝐀𝑘𝑘 − 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 < 
‖𝐀𝐀𝑘𝑘 + 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 ,         (7) 

The system (1) results to be asymptotically stable 
for one step prediction horizon. It is to notice 
that matrix 𝐑𝐑𝑝𝑝  collapses in a scalar in case of 
one step prediction horizon, 𝐑𝐑𝑝𝑝  =r. 

Combining Eq. (1) with (5), this expression is 
obtained: 

Proof 1 For one prediction step is considered, then 
according to [7], it follows that: 
 
𝐅𝐅1𝑝𝑝 = [𝐇𝐇𝑘𝑘𝐁𝐁𝑘𝑘] ,                                                            (8) 
𝐆𝐆𝑝𝑝=[𝐇𝐇𝑘𝑘𝐀𝐀𝑘𝑘 ] .                                                                 (9) 
Combining Eq. (1) with (5), this expression is 
obtained: 
 
𝒛𝒛(k + 1) =
𝐀𝐀k𝐳𝐳(k) +
𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝 �𝐘𝐘ⅆ𝑝𝑝 (𝑘𝑘)−� �𝐆𝐆𝑝𝑝𝐳𝐳(𝑘𝑘)� , (10)                                   

which is equivalent to write: 

 
𝐳𝐳(k + 1) =
�𝐀𝐀𝑘𝑘 − 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝�𝐳𝐳 (𝑘𝑘) +

𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘𝑑𝑑𝑝𝑝 (k).                 (11) 
 
If              
 

 ‖𝐑𝐑𝑝𝑝‖2  >
‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2
1−‖𝐴𝐴𝑘𝑘‖2

 , 

considering that  ‖𝐑𝐑𝑝𝑝‖ > 0, 

‖𝐀𝐀𝑘𝑘‖2 + ‖𝐑𝐑𝑝𝑝‖ 2
−1 ‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 <  1.       (13) 

Considering that    ‖𝐑𝐑𝑝𝑝‖2 = r is a scalar, the 
following condition can be derived:                                   
 
‖𝐀𝐀𝑘𝑘‖2 + ‖𝐁𝐁𝑘𝑘𝑟𝑟−1𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 < 1.                     (14) 
 
Being expression 𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅𝟏𝟏𝒑𝒑  a scalar for one step 
prediction horizon and  
 

𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅𝟏𝟏𝒑𝒑 > 0, 

 
as a consequence, it follows that: 
 
‖𝐀𝐀𝑘𝑘‖2 + ‖𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+r)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 < 1.     

(15)        
 
Considering the norm properties and condition 
(7), then: 
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‖𝐀𝐀𝑘𝑘 − 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+r)−1𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 
<  ‖𝐀𝐀𝑘𝑘 + 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+r)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 

< ‖𝐀𝐀𝑘𝑘‖2 +   ‖𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+r)−1𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 
<  1                                                                                   (16) 
 
To conclude: 
 
‖𝐀𝐀𝑘𝑘 − 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+r)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 < 1.     (17)              

 
Condition (1) states that the eigenvalues of the 
controlled system described by (11) are all inside 
the complex unit circle and thus system (11) results 
to be asymptotically stable. 
Stability represents the necessary condition of the 
optimality of a controlled system. In order to 
interpret the result, let us observe a linear 
mechanical system including a mass-spring system 
in which it is known that the eigenvalues can variate 
in the whole real and complex domain as functions 
of the mass which state the system dynamics. The 
following considerations can be done: 

- Case of high inertial system: 
This is the case in which mass 
m→+∞, then, because of the discretisation, 
it follows: 
(‖𝐀𝐀𝑘𝑘‖2 − 1‖) →0, with, according to the 
Landau notation, 𝒪𝒪(‖𝐀𝐀𝑘𝑘‖2 − 1) =
𝒪𝒪 � 1

𝑚𝑚
� , but in the meantime,𝒪𝒪�𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 � =
𝒪𝒪�𝐁𝐁𝑘𝑘𝐁𝐁𝑘𝑘𝑇𝑇� =
𝒪𝒪 � 1

𝑚𝑚2� . For a very slow system,‖𝐑𝐑𝑝𝑝‖2 →
0 and 
parameter ‖𝐑𝐑𝑝𝑝‖2 ,    according to (6), is 
present in the denominator  function of the 
optimal solution of (5) and in this case, 
small values are devoted to speed up the 
system. 

- Case of low inertial system: 
This is the case in which mass m→0, then, 
because of the discretisation, it follows: 
‖𝐀𝐀𝑘𝑘‖2 →0, with 𝒪𝒪(‖𝐀𝐀𝑘𝑘‖2 )= 𝒪𝒪 � 1

𝑚𝑚
�, but 

in the meantime, 𝒪𝒪�𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝
𝑇𝑇 � = 𝒪𝒪�𝐁𝐁𝑘𝑘𝐁𝐁k

𝑇𝑇� →
+∞ in which 𝒪𝒪�𝐁𝐁𝑘𝑘𝐁𝐁k

𝑇𝑇� = 𝒪𝒪 � 1
𝑚𝑚2�. For a 

very fast system‖𝐑𝐑𝑘𝑘‖2 →+∞ and 𝐑𝐑𝑝𝑝, 
according to (6), is present in the 
denominator  function of the optimal 
solution in (5) and in this case, large values 
are devoted to slow down the system. 
 

So, it is possible to conclude that a high inertial 
system needs relatively small values of ‖𝐑𝐑𝑝𝑝‖2  to be 

stabilised. On the contrary, a low inertial system 
needs large values of ‖𝐑𝐑𝑝𝑝‖2  to be stabilised. 

2.1  The saturation case 

Proposition 1 Let us take the following discrete 
SISO linear system as before into consideration: 
𝐳𝐳(k + 1) = 𝐀𝐀k𝐳𝐳(k) + 𝐁𝐁𝑘𝑘𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(k),                        (18) 
y(k) = 𝐇𝐇k𝐳𝐳(k),                                                     (19) 

and let 𝑈𝑈𝑚𝑚𝑎𝑎𝑥𝑥  a real value with 

�𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(k)� < Umax  ∀𝑘𝑘,                                    (20) 

Then (18) with the input saturation defined in 
(20) and controlled with the control law in (5) is 
asymptotically stable and its input avoids the 
saturation constraint if the following conditions 
hold: 

r = ‖𝐑𝐑𝑝𝑝‖2 > 

𝑚𝑚𝑎𝑎𝑥𝑥 �
‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘ⅆ𝑝𝑝 (𝑘𝑘)‖2 
U𝑚𝑚𝑎𝑎𝑥𝑥

−

‖𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝‖2 ,

‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 

1−‖𝐀𝐀𝑘𝑘‖2 
 �,                        (21) 

 

and  

‖𝐀𝐀𝑘𝑘 − 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 <
‖𝐀𝐀𝑘𝑘 + 𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 ,   (22) 

Proof 2 The demonstration is straightforward. In 
fact, just considering that: 

�𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(k)� < Umax  ∀𝑘𝑘,                                    

and thus, considering the input of the optimal 
predicted expression (11), it is enough that the 
following condition holds: 
‖𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘ⅆ𝑝𝑝

(𝑘𝑘)‖2 <

 Umax .                                                      (23) 
 
This can be written as: 
 
‖𝐁𝐁𝑘𝑘(𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘ⅆ𝑝𝑝

(𝑘𝑘)‖2 <

‖(𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝+𝐑𝐑𝑝𝑝)−1‖2 ‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘ⅆ𝑝𝑝(𝑘𝑘)‖2 <
 Umax .                                                       (24) 
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Considering that 𝐑𝐑𝑝𝑝  and 
𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝   are both positiv scalars in case of one 

step prediction horizon, then: 
 

‖𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝𝐑𝐑𝑝𝑝‖2 <

‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘ⅆ𝑝𝑝(𝑘𝑘)‖2 

U𝑚𝑚𝑎𝑎𝑥𝑥
.              (25) 

and thus, to guarantee asymptotic stability and 
anti-saturation input of system (18), it follows: 
 

r = ‖𝐑𝐑𝑝𝑝‖2 >  𝑚𝑚𝑎𝑎𝑥𝑥 �
‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝

𝑇𝑇 𝐐𝐐𝑝𝑝𝐘𝐘ⅆ𝑝𝑝(𝑘𝑘)‖2 

U𝑚𝑚𝑎𝑎𝑥𝑥
−

‖𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐅𝐅1𝑝𝑝‖2 ,

‖𝐁𝐁𝑘𝑘𝐅𝐅1𝑝𝑝
𝑇𝑇 𝐐𝐐𝑝𝑝𝐆𝐆𝑝𝑝‖2 

1−‖𝐀𝐀𝑘𝑘‖2 
 �.                       (26) 

 

Remark 1 

Concerning saturation phenomena, when 
saturation happens, the feedback loop is effectively 
broken. The value at the output of the controller can 
become very large and often degrades the closed-
loop performance in the form of large overshoot, 
long settling time and sometimes even instability. 

3 Simulation examples 

3.1 The boiler example 
 
Water regeneration problem is one of the most 
important issues of some countries. In the last years 
many efforts were made to propose systems to 
recycle, regenerate and store cleaned water from 
waste water. Some of these systems still suffer of 
lack of automation structure which should guarantee 
high efficiency and an improvement of the quality 
of the regenerated water. A great advancement of 
the control theory together with the development of 
intelligent control algorithms took place in the 
research in the last years. 

The main nomenclature: 
𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡): input mass flow (kg/sec) 
𝑚𝑚𝑜𝑜(𝑡𝑡): output mass flow (kg/sec) 
𝑚𝑚𝑜𝑜(𝑡𝑡): mass (Kg) 
𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

: mass flow (kg/sec) 
𝑝𝑝(𝑡𝑡): pressure inside of the evaporator 
T: Temperature (K) 
V: Volume (1) 
𝑅𝑅𝑔𝑔 : vapor constant 
 

Figure 1 demonstrates a schematic representation of 
the tested system. The following three elements are 
parts of this system: a boiler, a compressor and an 
evaporator. The waste water stays in the middle part 
and the lower part of the boiler. The upper part a 
vapor chamber is dedicated to keep the water vapor 
produced after heating the waste water. At first, the 
waste water is heated by a resistor system until the 
water vapor appears in the vapor chamber. At this 
time, the heating is turned off and the compressor is 
turned on. A high pressure must be obtained in the 
evaporator by means of the compressor. In the 
meantime, the compressor should reduce the 
pressure in the vapor chamber by means of a mass 
flow. This mass flow (𝑚𝑚𝑜𝑜(𝑡𝑡)) after the condensed 
phase is purified water in the output of the 
evaporator. This water is also stilled. The vapor is 
condensed after giving heat to the waste water in the 
evaporator. The compressor keeps a low pressure in 
the vapor chamber to be able to guarantee the new 
waste water entering from the upper part. The 
compressor works as a controller in this case. Its 
output is represented by the mass flow 𝑚𝑚𝑜𝑜(𝑡𝑡) with 
the constraint that 𝑚𝑚𝑜𝑜(𝑡𝑡) > 0.  The compressor 
consists of an asynchronous motor controlled by 
means of an inverter piloted by a PWM signal. It 
converts the output of the LMPC controller in 
frequency. The pressure error occurs in input to 
LMPC controller. Anyway, the dynamics of the 
asynchronous motor with the inverter and all other 
converters are much faster than the one of the 
controlled process. Short description of the drain: in 
the initial phase the pressure in the container is the 
same as the ambient pressure (circa 1.013 bar). 
After the heating process the pressure increases 
gradually creases gradually and the evaporating 
phase of the water starts. When switching of the fan 
is reduced, the temperature increases in the “internal 
exchanger”. The water boils and evaporates faster at 
lower pressure. New water is added by a continuous 
control with floats. The condensed water vapor from 
the “internal heat exchanger” is purified. The 
dynamical model of the system must be taken into 
account for controller design purposes. Considering 
that the control process begins after the heating 
phase and when the water vapor appears in the 
boiler, the following equations can be taken into 
consideration. 
 
𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑖𝑖(𝑡𝑡)−𝑚𝑚𝑜𝑜(𝑡𝑡),                           (27) 
 

 𝑑𝑑𝑝𝑝(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

𝑅𝑅𝑔𝑔T
𝑉𝑉

,                                                (28) 
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in which 𝑚𝑚𝑖𝑖(𝑡𝑡) is a stepwise positive constant 
function. Considering the Forward Euler 
discretisation with sampling time 𝑇𝑇𝑠𝑠, the following 
expression is obtained: 
 
𝑚𝑚(𝑘𝑘 + 1) = 𝑇𝑇𝑠𝑠�𝑚𝑚𝑖𝑖(𝑘𝑘) −𝑚𝑚𝑜𝑜(𝑘𝑘)� + 𝑚𝑚(𝑘𝑘), (29) 

 

𝑝𝑝(𝑘𝑘 + 1) = �𝑚𝑚𝑖𝑖(𝑘𝑘)−𝑚𝑚𝑜𝑜(𝑘𝑘)�
𝑅𝑅𝑔𝑔T
𝑉𝑉

+  𝑝𝑝(𝑘𝑘), (30) 
and thus 
 

�𝑚𝑚
(𝑘𝑘 + 1)

𝑝𝑝(𝑘𝑘 + 1) �=�
𝑇𝑇𝑠𝑠  0
0   1� �

𝑚𝑚(𝑘𝑘)
𝑝𝑝(𝑘𝑘) � + �

𝑇𝑇𝑠𝑠 
𝑇𝑇𝑠𝑠𝑅𝑅𝑔𝑔𝑇𝑇
𝑉𝑉

� (𝑚𝑚𝑖𝑖(𝑘𝑘) −

𝑚𝑚0(k)),  

wℎ𝑒𝑒𝑟𝑟𝑒𝑒  𝑧𝑧(𝑘𝑘 + 1) = �𝑚𝑚
(𝑘𝑘 + 1)

𝑝𝑝(𝑘𝑘 + 1) � ,𝐴𝐴𝑘𝑘 = �𝑇𝑇𝑠𝑠  0
0   1� ,

𝑧𝑧𝑘𝑘 = �𝑚𝑚
(𝑘𝑘)

𝑝𝑝(𝑘𝑘) � ,𝐵𝐵𝑘𝑘=�
𝑇𝑇𝑠𝑠 

𝑇𝑇𝑠𝑠𝑅𝑅𝑔𝑔𝑇𝑇
𝑉𝑉

�,  𝑢𝑢𝑚𝑚𝑝𝑝𝑐𝑐(𝑡𝑡)= (𝑚𝑚𝑖𝑖(𝑘𝑘) −

𝑚𝑚0(k)).                                                            (31) 
 
 
 
Concerning the simulation results, it should be noted 
that function 𝑚𝑚𝑖𝑖(𝑡𝑡) is a stepwise constant function 
with 𝑚𝑚𝑖𝑖(𝑡𝑡)=0.086 (kg/sec.) or 𝑚𝑚𝑖𝑖(𝑡𝑡)=0 and in the 
simulated case 𝑚𝑚𝑖𝑖(𝑡𝑡)=0.086 (kg/sec.) is considered. 
As already explained, in the simulations 
two cases should be distinguished: weak anti-
saturating action: 
 

𝑟𝑟(1,1) >
𝐁𝐁𝑘𝑘𝐁𝐁k

𝑇𝑇‖𝐘𝐘ⅆ𝑝𝑝 (𝑘𝑘)‖

U𝑚𝑚𝑎𝑎𝑥𝑥
,                                       (32) 

 
and strong anti-saturating action: 
 

𝑟𝑟(1,1) >>
𝐁𝐁𝑘𝑘𝐁𝐁k

𝑇𝑇‖𝐘𝐘ⅆ𝑝𝑝 (𝑘𝑘)‖

U𝑚𝑚𝑎𝑎𝑥𝑥
.                                    (33) 

 
The controlled pressure which is the main result of 
this contribution is demonstrated in the top part of 
Fig. 2. If the anti-saturating action is weak, it is 
necessary that the anti-saturating controller has time 
to re-establish the control loop. During the 
saturation effect the feedback control is broken, so 
the long remaining of the pressure at negative values 
can be explained by the lack of the feedback control 
action. It is well seen from the low part of Fig. 2 
demonstrating the mass flow 𝑑𝑑𝑚𝑚(𝑡𝑡)

𝑑𝑑𝑡𝑡
= 𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡) −

𝑚𝑚0(𝑡𝑡) (kg/sec) that this function is resulting with 
the relation: 
𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

≈
𝑑𝑑𝑝𝑝(𝑡𝑡)
𝑑𝑑𝑡𝑡

.                                                        (34) 

 
If we take the following equation one more time 
into account: 
 
𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡) −𝑚𝑚0(𝑡𝑡),                                    (35) 
 
a strong initial action through the mass flow 𝑚𝑚0(𝑡𝑡) 
is necessary for starting the process. After 
considering these two figures it becomes visible that 
the controlled system through the anti-saturating 
action leaves the saturation very quickly having 
faster dynamic. This occurs in case of strong anti-
saturating action and its effect is represented in the 
top and low parts of Fig. 3. The faster dynamics are 
obtained due to the stronger anti-saturating action 
letting the fast reactivation of the control loop. In 
presence of saturation the control loop is open and 
no feedback control occurs. 

 

Fig. 1 Boiler system 

 

More in depth, analysing the simulations of Fig. 2 it 
is possible to remark that in case of weak anti-
saturation action, a high input mass flow is 
generated because of a small value of the elements 
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of matrix Q which allow large value of the input 
calculated as a result of the optimal solution. Figure 
3 indicates the opposite effect, in which large value 
of matrix Q allows a small input mass flow. As a 
consequence of that, the saturation is avoided and an 
adequate control is obtained. A wider discussion of 
this effect is given in the second example. 

 

 
 
Fig. 2 Top: desired and obtained pressure with 
week anti-saturating action. Fig. 2 Low: mass flow 
𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡) −𝑚𝑚0(𝑡𝑡) (kg/sec.) with weak anti-
saturating action. 
 
 

 

 
 
Fig. 3 Top: desired and obtained pressure with 
strong anti-saturating action. Low: mass flow 
 𝑑𝑑𝑚𝑚(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑚𝑚𝑖𝑖𝑛𝑛(𝑡𝑡) −𝑚𝑚0(𝑡𝑡) (kg/sec.) with strong anti-
saturating action. 
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3.2 DC-Drive example 
 
 
DC drives can be in a significant percentage of a 
plant load in many industrial facilities. They are 
commonly used in the plastics, rubber, paper, 
textile, printing, oil, chemical, metal, and mining 
industries. These drives are still the most common 
types of motor speed control for applications 
requiring very fine control over wide speed ranges 
with high torques.  In Fig. 4, the electrical 
equivalent circuit of a DC-drive is considered and in 
Fig. 5 and 6 the schematic structure of the rotor is 
indicated. 
 
 
 
 
 
 
 
 

 

 

 

Fig. 4  Electrical equivalent circuit 

 

 

 

 

 

 

 

 

Fig. 5 Rotor of the drive 

 

 

 

 

 

 

 

 

Fig. 6 Section of the rotor of the drive 

Considering scheme of Fig. 4 the following linear 
model of the drive is obtained: 

 
𝑑𝑑𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 1
𝐿𝐿
�𝑢𝑢𝑖𝑖𝑛𝑛𝑝𝑝(𝑡𝑡) − 𝑅𝑅𝑖𝑖(𝑡𝑡) − 𝐾𝐾𝐸𝐸′ 𝜔𝜔(𝑡𝑡)�,              (36) 

𝑑𝑑𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡

 = 1
𝐽𝐽
�𝐾𝐾𝑀𝑀′ 𝑖𝑖(𝑡𝑡) − 𝐾𝐾𝑓𝑓′𝜔𝜔(𝑡𝑡)�,                            (37) 

 

where parameter L represents the inductance, R 
represents the resistance of the coil of the motor, 
𝐾𝐾𝑀𝑀′ = 𝐾𝐾𝐸𝐸′  is the characteristic coefficient of the 
motor and 𝐾𝐾𝑓𝑓′  the friction constant. After the 
forward Euler discretization for the current, 
angular velocity and input voltage, the following 
expressions are obtained:  

𝑖𝑖(𝑡𝑡) = 𝑖𝑖�(𝑘𝑘 − 1)𝑇𝑇𝑠𝑠� = 𝑖𝑖(𝑘𝑘 − 1)  ∀𝑘𝑘 = 1,2, …𝑛𝑛, 
(38) 

 
𝜔𝜔(𝑡𝑡) = 𝜔𝜔(𝑘𝑘 − 1),                                                (39)                                               
 
𝑢𝑢𝑖𝑖𝑛𝑛𝑝𝑝(𝑡𝑡) = 𝑢𝑢𝑖𝑖𝑛𝑛𝑝𝑝(𝑘𝑘 − 1),                                         (40) 
 

 and 

𝑑𝑑𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  𝑖𝑖(𝑘𝑘)−𝑖𝑖(𝑘𝑘−1)
𝑇𝑇𝑠𝑠

,                                         (41) 
 
 

𝑑𝑑𝜔𝜔(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  𝜔𝜔(𝑘𝑘)−𝜔𝜔(𝑘𝑘−1)
𝑇𝑇𝑠𝑠

.                                           (42) 
 

Inserting expression (38), (39), (40), (41) and (42) 
into (36) and (37), the following expressions are 
obtained: 

 

l
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𝑖𝑖(𝑘𝑘)−𝑖𝑖(𝑘𝑘−1)
𝑇𝑇𝑠𝑠

= 𝑢𝑢𝑖𝑖𝑛𝑛𝑝𝑝 (𝑘𝑘−1)
𝐿𝐿

− 𝐾𝐾𝑀𝑀
′ 𝜔𝜔(𝑘𝑘−1)

𝐿𝐿
− 𝑅𝑅𝑖𝑖(𝑘𝑘−1)

𝐿𝐿
 ⇒

𝑖𝑖(𝑘𝑘) = �1 − 𝑅𝑅𝑇𝑇𝑠𝑠
𝐿𝐿
� 𝑖𝑖(𝑘𝑘 − 1) 𝐾𝐾𝑀𝑀

′ 𝑇𝑇𝑠𝑠
𝐿𝐿

 𝜔𝜔(𝑘𝑘 − 1) −
𝑢𝑢𝑖𝑖𝑛𝑛𝑝𝑝 (𝑘𝑘−1)𝑇𝑇𝑠𝑠

𝐿𝐿
,                                                                     (43)  

 
and                                               
 
 𝜔𝜔(𝑘𝑘)−𝜔𝜔(𝑘𝑘 − 1)

𝑇𝑇𝑠𝑠
=
𝐾𝐾𝑓𝑓′𝜔𝜔(𝑘𝑘 − 1)

𝐽𝐽
∓
𝐾𝐾𝑀𝑀′ (𝑘𝑘 − 1)

𝐽𝐽

⇒ 𝜔𝜔(𝑘𝑘)�1 −
𝐾𝐾𝑓𝑓′𝑇𝑇𝑠𝑠
𝐽𝐽 �𝜔𝜔(𝑘𝑘 − 1)

+
𝐾𝐾𝑀𝑀′ 𝑇𝑇𝑠𝑠
𝐽𝐽

 𝑖𝑖(𝑘𝑘 − 1).                        (44) 

 
 

If (43) and (44) are written in a matrix form, then 

 

 

In Fig. 7 and Fig. 8 the data sheet of the 
considered motor is reported.  

 
Fig. 7 Data sheet 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Data sheet 

 

In Fig. 9 the tracking of the velocity is shown 
with a strong anti-saturating action. From this 
figure it is possible to observe a bias due to the 
limit of the input signal as a consequence of large 
values of the elements of matrix Q. In Fig. 10 the 
corresponding current in case of a strong anti-
saturating action is shown. Figure 11 shows the 
case in which no anti-saturating action is applied 
and in Fig. 12 its resulting current is shown. It is 
possible to see an unstable effect due to the small 
values of matrix Q which induce a large value of 
the input signal, saturation and a possible 
instability. Figure 13 shows the case, in which a 
compromise between non-saturation action but in 
the meantime non-excessive values of the 
elements of matrix Q are considered. In this 
situation, the saturation is avoided and in the 
meantime an enough input voltage is obtained to 
achieve an adequate tracking. Figure 14 shows 
the corresponding current of this possible 
configuration. In general, this technique is a 
heuristic one and it is based on the barrier 
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concept of the cost function. The barrier is 
represented by the input squared term multiplied 
by the weight matrix Q. This barrier represents 
the power input which together with the squared 
error tracking states the cost function which 
represents a compromise between tracking 
precision and power input to realize this tracking 
precision. 

 
Fig. 9 Velocity tracking with strong anti-
saturating action 

 

 

Fig. 10 Current voltage with strong anti-
saturating action 

 
Fig. 11 Velocity tracking with without anti-
saturating action 

 

 

 

Fig. 12 Current voltage with week anti-saturating 
action 
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Fig. 13 Velocity tracking in case of adequate 
values of the elements of matrix Q 

 

 
Fig. 14 Current in case of adequate values of the 
elements of matrix Q 

 

 

 

4 Conclusion 

One of the most important problems in the 
context of optimization using LMPC is 
represented by conservative conditions on the 
stability. This paper presents a sufficient and 

constructive condition for the stability of a 
LMPC for one step prediction horizon 
calculating lower bound of the unique element of 
matrix R which represents the weight of the input 
in a typical given cost function. A physical 
interpretation of the result is given in the light of 
some physical considerations. In the second part 
of the paper the saturation case is considered and 
a sufficient condition to obtain stability and 
saturation avoidance is proven. Two illustrative 
examples are provided. 
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